3d modelowanie 3d tworzenie modeli 3d autodesk 123d catch modele do drukarek 3d kopiowanie przedmiotów Skomentuj poradnik Poradnik Jak wykonać model 3D przedmiotu na podstawie zdjęć skomentowało 1 osób. Innowacyjne drukarki 3D i skanery 3D dostosowane do specjalistycznych potrzeb. Firma GLOBAL 3D, zarejestrowana oraz mająca swoją siedzibę w Polsce, jest oficjalnym i autoryzowanym dystrybutorem urządzeń i akcesoriów wiodących producentów, oferując pełną obsługę gwarancyjną i pogwarancyjną oraz profesjonalny serwis najnowszej generacji sprzętu do druku 3D i skanu 3D. 6 – FreeCAD. FreeCAD jest, jak sama nazwa wskazuje, całkowicie darmowy. Jest to parametryczne oprogramowanie 3D typu open source, czasem kwalifikowane jako bardzo podstawowe, ale zawarty w nim komponent parametryczny ułatwia modelowanie początkującym, którzy chcą w pełni zaangażować się w modelowanie 3D w oprogramowaniu CAD . Wydrukuj plik odpowiedni dla Twojego modelu drukarki, a następnie zmodyfikuj go tak, jak chcesz, aby na koniec wydrukować pełen projekt komórki zwierzęcej. Projekt komórki zwierzęcej 3D wymaga umiejętności korzystania z oprogramowania komputerowego, takiego jak Blender, Autodesk Maya czy ZBrush. Komórka zwierzęca - projekt i jego budowa Spis treści: [ ukryj] 1 Projektowanie druku 3D – zrób to sam! 2 TinkerCAD – na dobry start dla początkujących konstruktorów. 3 Projektowanie druku 3D – logowanie do aplikacji TinkerCAD. 4 Tworzenie pierwszego projektu 3D w środowisku TinkerCAD. 5 Tworzenie obiektu 3D z gotowych kształtów. Intuicyjna aplikacja. Pozwala w łatwy sposób rozmieszczać, skalować, obracać i kopiować modele 3D w polu roboczych drukarki. Przejrzysty graficzny interfejs nie wymaga od użytkownika zaawansowanej wiedzy. MakerBot Desktop to aplikacja dedykowana do sterowania urządzeniami firmy MakerBot: Replicator 2 oraz Replicator 2X. . Druk 3D Druk 3D – jak zacząć? Druk 3D jest niezwykle ciekawą technologią otwierającą szereg możliwości, a przy tym wymagającą stosunkowo niedużych nakładów finansowych. W świat druku 3d można wejść na wiele sposobów. Z jednej strony projektując elementy, które chcemy wykonać w programach CAD, np. ViaCAD Pro, a następnie zlecić firmom wydruk 3D. Z innej strony można zainwestować w drukarki 3D, a modele pobierać z zasobów internetowych. Naturalnie posiadając spore doświadczenie można te oba aspekty łączyć i tworzyć projekty „domowe” i przemysłowe. Podsumowując, aby rozpocząć przygodę z drukiem 3D (ang. 3D printing) wystarczą chęci i rozpoznanie własnych potrzeb. Z czasem może się okazać, że drukarki 3D będą w domach tak samo dostępne jak zwyczajne drukarki do papieru. Co jest potrzebne do drukowania 3D? Program CAD i wprawa w projektowaniu 3DAlternatywą punktu pierwszego jest import modeliUmiejętność przygotowania modelu do drukuDrukarka 3DDostawca filamentuWykańczanie modeli Skąd pobrać programy do druku 3D? Odpowiadając na to pytanie skoncentrujmy się na pierwszym etapie przygody z drukowaniem 3d. Jest to wybór programu CAD do tworzenia modeli, na podstawie których wykonamy wydruk. Modeler dobrze, aby umożliwiał import różnych plików, formatów CAD, które możemy zmodyfikować jak również umożliwiał tworzenie własnych modeli przestrzennych. Dodatkowym istotnym aspektem jest posiadania analizy elementów przeznaczonych do druku3D. Ważne, abyśmy mogli sprawdzić czy nasz model da się wydrukować poprawnie. Oprogramowaniem, które spełnia te potrzeby jest np. ViaCAD. Można je pobrać po uzupełnieniu formularza. Animacja i analiza nakładanych warstw filamentu Jaki wybrać filament do druku 3D? Druk 3D od strony fizycznej wymaga drukarki oraz materiału, z którego powstanie nasz element. Ten materiał nazywamy filamentem, a wybór zależy od zastosowania naszego produktu. Do wyboru jest wiele rodzai np. PLAABSASAESDPPPETi wiele innych odmian Jaki wybrać filament – wiele zależy od właściwości jaki chcemy uzyskać w naszym produkcie. Szczegółowe informacje i rodzaje zamieściliśmy na naszej stronie internetowej w zakładce Druk 3D. Filamenty można kupić kontaktując się z nami poprzez telefon lub wiadomość e-mail. Warto realizować zamówienia filamentów w naszej firmie ponieważ jesteśmy dystrybutorem polskiego producenta i gwarantujemy krótkie terminy dostaw. Cześć! Przygotowałem dla Was listę serwisów udostępniających modele do #druk3d. Lista powinna przydać się w szczególności tym, którzy nie potrafią jeszcze samemu wymodelować potrzebnych im części, lub zwyczajnie nie mają na to czasu. W poniższym zestawieniu znajduje się kilka perełek, jak np. baza modeli medycznych, czy baza modeli kosmicznych udostępnionych przez NASA. Na pewno każdy znajdzie na tej liście coś dla – w osobnym artykule przygotowałem listę polskich stron, blogów, serwisów i kanałów YouTube poświęconych drukowi 3D :)Wyszukiwarki modeli 3DSTLfinder – wyszukiwarka plików STL, która przeczesuje wiele różnych serwisów w poszukiwaniu modeli 3D,Yeggi – serwis działający na identycznej zasadzie, jak STL finder,Yobi 3D – jeszcze jedna multiwyszukiwarka modeli do druku,Bazy modeli 3D tworzone przez społecznośćThingiverse – jeden z największych serwisów z modelami 3D tworzonymi przez społeczność,GrabCAD – duża baza modeli 3D (nie tylko STL),3D Content Central – pokaźna baza zawierająca dużą ilość technicznych modeli 3D (elektronika, mechanika, itp.),YouMagine – kolejna baza plików STL udostępnianych przez społeczność,Pinshape – duża baza zarówno darmowych, jak i płatnych modeli 3D,Zortrax Library – baza plików STL udostępnianych przez społeczność zgromadzoną wokół drukarek Zortrax oraz przez samego Zortraxa,XYZ 3D Gallery – podobnie jak wyżej, tylko ze społecznością drukarek XYZ,Tinkercad – baza modeli utworzonych przez użytkowników aplikacji Tinkercad,3D Warehouse – podobny serwis, ale gromadzący wokół siebie społeczność oprogramowania SketchUp,NIH 3D – interesująca baza medycznych i chemicznych modeli 3D (w różnych formatach),ShareCG – kolejna baza modeli do druku,3D CAD Browser – baza umożliwiająca pobieranie sporej ilości darmowych modeli. Modele płatne są dostępne po wykupieniu konta premium, lub po udostępnieniu w bazie swoich modeli,TF3DM – jeszcze jedna baza modeli,MyMiniFactory – kolejna baza modeli,Bazy modeli 3D udostępniane przez firmyIgus CAD – kompletna baza modeli 3D produktów Igus (szyny, prowadnice, wózki, łożyska, itd.),NASA – modele 3D udostępnione przez NASA,Dremel 3D Idea Builder – baza udostępniona przez producenta drukarki Dremel 3D Idea Builder,The Forge – baza modeli autorstwa Zheng3,Sklepy z modelami 3DStlhive – sklep zawierający sporą ilość darmowych modeli 3D,Turbo Squid – sklep z modelami 3D dla profesjonalistów,CGtrader – kolejny sklep z modelami 3D,Squir – sklep z modelami samochodów,3DAGOGO – kolejny sklep z modelami do druku 3D (część modeli jest darmowych),Cults 3D – i jeszcze jeden sklep (tutaj również część modeli można pobrać za darmo),3D Export (PL) – sklep z modelami 3D (nie tylko do druku) z polską wersją językową,Redpah – jak by komuś było mało sklepów, to jest jeszcze jeden,Mam nadzieję, że powyższe zestawienie ułatwi i przyspieszy Waszą pracę nad nowymi projektami, które będziecie zgłaszać do naszego konkursu. Sam dosyć regularnie przeglądam te serwisy w poszukiwaniu gotowych komponentów do swoich projektów. Ostatnio np. zacząłem pracować nad automatycznym sliderem do kamery:Wymodelować musiałem jedynie te półprzezroczyste niebieskie części, które będą drukowane na drukarce 3D. Nie było sensu tracić czasu na modelowanie całej reszty, dlatego szynę wraz z wózkiem ściągnąłem z bazy Igusa, a znormalizowane modele łożysk, kółek zębatych i silnika Pololu znalazłem w pozostałych serwisach :) Trzeba sobie ułatwiać życie!Jeżeli znacie jakiś serwis, którego nie ma na tej liście, dajcie koniecznie znać. Postaram się na bieżąco ją aktualizować :)Udanych wydruków!Pozdrawiam Łukasz Autor wyślij wiadomość do autoraUrodzony majsterkowicz, który w wieku 8 lat skubnął mamie żelazko i rozkręcił je na części pierwsze. W dzisiejszym artykule przedstawię proste wskazówki jakie należy wziąć pd uwagę podczas projektowania pod druk 3d. Poruszę kwestie dotyczące rozmiaru, orientacji elementu na platformie, stosowania podpór oraz tolerancji wymiarowej. Rozmiar Wielkość ostatecznego elementu nie ma znaczenia ze względu na to, iż każdy model można podzielić na jego składowe części. Ograniczeniem w tym przypadku będzie przede wszystkim przestrzeń robocza drukarki. To ona zdeterminuje maksymalną wielkość poszczególnej części modelu. Im mniejsza przestrzeń robocza tym na mniejsze elementy musimy podzielić nasz model. Projektant musi wziąć pod uwagę w jaki sposób elementy te będą ze sobą łączone i odpowiednio zaprojektować miejsca łączeń. Zasadniczo możemy wyróżnić dwie możliwości łączeń. Części możemy połączyć ze sobą klejem lub połączyć śrubami. W każdym z wymienionych przypadków należałoby zaprojektować łączenia w taki sposób żeby ułatwiły końcowy i poprawny montaż. Przydatne będą tu odpowiednie elementy pozycjonujące jedną część w stosunku do drugiej. Rys. 1. Przykład elementów pozycjonujących części względem siebie Inaczej ma się sprawa do modeli o niewielkich rozmiarach. W tym przypadku wybór technologii ma znacznie większe znaczenie. W przypadku technologii FDM minimalny rozmiar elementu czy też detalu na danej części będzie determinowany przez średnice dyszy drukującej (o tym więcej w dalszej części artykułu). Przy druku niewielkich, szczegółowych elementów lepiej spisze się technologia SLA (przegląd technologii przyrostowych). Orientacja Odpowiednia orientacja modelu w procesie drukowania wpływa na jego wytrzymałość mechaniczną oraz na jego estetykę. Technologie przyrostowe mają to do siebie, że drukowany obiekt ma cechy anizotropowe. Wydruki posiadają różną wytrzymałość w różnych kierunkach działania siły. Najmniejsza wytrzymałość występuje równolegle do warstwy wydruku. Jak sobie z tym radzić? W miarę możliwości projektować tak części aby powierzchnie równoległe do płaszczyzny wydruku były jak największe. Zastosowanie odpowiedniego materiału oraz temperatury również wpływa na aspekt wytrzymałościowy drukowanego elementu, ale to dotyczy już samego procesu wydruku i doboru odpowiednich parametrów. Podpory (Support) Jedną z zalet druku 3d jest możliwość wytwarzania w łatwy i przystępny sposób skomplikowanych brył oraz struktur. W zależności od skomplikowania modelu 3d, może być konieczne użycie w procesie druku tzw. struktur podporowych (support). Jednakże, projektant podchodząc do projektu, powinien starać się niwelować obszary wymagające stosowania podpór. Stosowanie supportu wpływa przede wszystkim na czas wydruku, zwiększa zapotrzebowanie na materiał oraz dodaje dodatkowej pracy którą trzeba wykonać w procesie odseparowywania materiału podporowego od reszty wydruku. Oczywiście to wszystko wpływa na zwiększenie kosztów wytworzenia danego elementu. Możemy mówić o dwóch sposobach na generowanie podpór. Jednym z nich będzie generowanie supportu automatycznie przez specjalistyczne oprogramowanie typu slicer natomiast drugi sposób będzie dotyczył ręcznego wymodelowania podpór w odpowiednich, koniecznych miejscach projektowanego modelu. Zaletą takiego podejścia jest mniejsza ilość supportu niż w przypadku struktur generowanych automatycznie. Rys. 2. Podpory wygenerowane automatycznie Jak niwelować konieczność wykorzystania struktur podporowych? Przede wszystkim starajmy się ograniczać obecność nawisów w modelu. W ramach możliwości stosujmy łagodne przejścia odchylone o 45° od pionu (rys. 3). Możemy również tak zaprojektować część aby zamiast supportu móc wykorzystać metodę mostów (rys. 4). Stosowanie mostów jest jednak również ograniczone. W większości przypadków sprawdzą się mosty do długości max 4 – 5 cm. Powyżej wspomnianej odległości, struktura taka będzie za bardzo opadać. Pisząc ogólnie, nie da się drukować w powietrzu. Rys. 3. Zamiast supportu (kolor ciemny szary) zastosowano fazę 45° Rys. 4. Przykład „mostu” (bridge) Tolerancja wymiarowa Ostatnim ważnym elementem jaki należy wziąć pod uwagę podczas projektowania pod druk 3d, jest aspekt dotyczący tolerancji wymiarowej. W przypadku druku 3d musimy wziąć pod uwagę możliwości fizyczne maszyny oraz skurcz materiału. W przypadku technologii FDM podczas projektowania, należy wziąć pod uwagę średnice dyszy urządzenia, gdyż ta będzie determinować wielkość najmniejszego detalu. I tak np. w przypadku szerokości ścianek projektowanej części, należało by stosować wielokrotność średnicy dyszy. Standardowa średnica dyszy w urządzeniach typu FDM wynosi 0,4 mm. Jeśli chodzi o minimalną szerokość ścianek to nie powinna być ona mniejsza niż 0,8 mm. Projektując część należy uwzględnić również skurcz materiału. Ma to szczególne znaczenie w przypadku pasowania, łączenia kilku części ze sobą. Dobrą praktyką w tym przypadku będzie zastosowanie luzu między częściami od 0,3 do 0,5 mm. Ta sama zasada dotyczyć będzie otworów, które pod wpływem skurczu mają na ogół mniejszą średnicę niż zakładał projekt. W dobie popularności technologii addytywnych, coraz niższych cen prostych drukarek FDM (FFF), oraz szerokiej dostępności do obszernych darmowych baz modeli 3D takich jak czy u wielu amatorów tej technologii może pojawić się chęć stworzenia własnych modeli lub modyfikacji już istniejących tak by bardziej pasowały do ich przeznaczenia, oczekiwań lub gustu. Do stworzenia modelu 3D nie trzeba posiadać wysoce wyspecjalizowanego a co za tym idzie drogiego oprogramowania do modelowania. Można skorzystać z darmowych programów jakich jak blender lub sketchup online. Jednak wykonanie dobrego wizualnie modelu może nie być równoznaczne z modelem dostosowanym pod druk 3D. W poniższym artykule postaram się przedstawić jakimi zasadami należy się kierować podczas modelowania na potrzeby druku przestrzennego, dzięki czemu można uniknąć wielu błędów druku 3D a także oszczędzić czas i pieniądze. Zlecenie profesjonalnej firmie przystosowanie modelu do druku 3D w skrajnych przypadkach może pochłonąć więcej środków niż jego stworzenie. Czasem szybszym i łatwiejszym sposobem jest wykonanie modelu od zera na podstawie przesłanego modelu z błędami niż próba naprawiania istniejącego. Ogólne wymagania stawiane modelom przeznaczonym do druku 3D: Formatem używanym przez wszystkie slicery, czyli programy przygotowujące model 3D do druku 3D i przetwarzające go na program, który następnie wykonuje drukarka, jest format .STL. Zapisuje on model poprzez aproksymację jego ścian przy pomocy trójkątów. Nawet jeśli zapisanym kształtem jest kula w formacie .STL będzie ona składała się z wielu małych, płaskich trójkątów. Dokładność odwzorowania jest zależna od ilości i wielkości tych trójkątów. Jednak wraz ze wzrostem ich liczebności model zajmuje więcej miejsca a praca nad nim staje się wolniejsza z uwagi na wymaganą moc obliczeniową. Każdy z tych trójkątów ma dwie strony, wewnętrzną i zewnętrzną. Slicer rozpoznaje te strony dzięki czemu program wie gdzie jest wnętrze modelu, które należy wypełnić, a gdzie obszar zewnętrzny. orientacja ścianek modelu – pokazuje poprawną orientację normalnych (kolor bordowy skierowany do wnętrza modelu a kolor niebieski na zewnątrz) Dlatego też, każdy model projektowany pod druk 3D powinien być przede wszystkim zamkniętą, „szczelną”, pojedynczą bryłą. Kilka zamkniętych brył stykających się ścianami może spowodować, że wydrukowane obie bryły nie będą ze sobą połączone bądź krawędzie stykających się płaszczyzn będą posiadały widoczny ślad takiego połączenia i powierzchnia nie będzie jednolita. Model nie może posiadać dziur, czyli brakujący trójkątów, przez które widać wnętrze modelu. Taki model traktowany jest nie jako bryła lecz jak powierzchnia o zerowej grubości, czego oczywiście nie da się uzyskać. Problemem są także tzw. odwrócone normalne, pojawiają się one gdy część trójkątów w modeli .STL jest obrócona stroną wewnętrzną na zewnątrz i odwrotnie. Slicer nie jest w stanie zinterpretować gdzie jest środek modelu co może skutkować niepowodzeniem w druku. odwrócone normalne – miejscowe odwrócenie normalnych (kolor bordowy powinien być skierowany do wnętrza modelu) Podobny problem może się pojawić przy modelu, który zawiera przecinające się, bądź nakładające się na siebie ściany. Dobrze przygotowany model musi być wolny od wymienionych wyżej błędów. Jak unikać błędów geometrii? Najlepszym sposobem na pozbycie się błędów geometrii w modelu 3D jest ich unikanie podczas projektowania. Profesjonalne programy konstruktorskie niemal automatycznie zapobiegają powstawaniu takich błędów gdyż najczęściej pracują one już na modelach bryłowych. Darmowe programy nie posiadają takich „zabezpieczeń” i wymagają bardziej przemyślanej pracy. Zasada jest prosta: im bardziej skomplikowany i złożony model tym większa szansa na powstanie błędów geometrii. Aby zmniejszyć prawdopodobieństwo ich wystąpienia należy pracować na pojedynczych prymitywach (prostych podstawowych brył takich jak: sześcian, walec, sfera, torus itp.), które w trakcie modelowania, poprzez wyciąganie, skalowanie, deformowanie i inne operacje przerabia się na docelowe modele. W przypadku konieczności pracy na kilku bryłach należy je potem ze sobą połączyć przy pomocy operacji Boolowskich (CSG). Pozwala to uniknąć większości błędów podczas tworzenia modelu. Błędy mogą się także pojawiać podczas modyfikowania pobranych wcześniej modeli 3D z internetu. Edycja tych obiektów może doprowadzić do uzyskania przenikających się ścian lub dziur w modelu. Takie niepoprawności ciężko wychwycić gołym okiem, a powodują one poważne komplikacje przy druku. Sprawdzanie geometrii modelu: Do weryfikacji poprawności modelu wykorzystuje się specjalistyczne oprogramowanie, które automatycznie sprawdza czy model posiada błędy geometrii, naprawia je automatycznie lub wskazuje ich miejsce gdy automatyczna naprawa nie jest możliwa. Niestety nie są one darmowe w swoich pełnych wersjach. Jednak warte są swojej ceny. Oprócz naprawy błędów i weryfikacji geometrii umożliwiają min. wygładzenie powierzchni poprzez zagęszczenie siatki trójkątów, lub zmniejszenie „wagi” pliku poprzez zastąpienie wielu trójkątów, leżących na płaszczyźnie, jednym. Ponadto umożliwiają one wykonanie tzw. shell’a, czyli opróżnienia modelu zostawiając jednakową grubość ścianki w całym modelu a sam model pusty w środku, jest to zalecane przy niektórych technologiach druku w celu oszczędności materiału. Część programów posiada moduły umożliwiające przygotowanie pliku pod druk 3D tak jak slicery. Proste programy do modelowania 3D także mogą posiadać pewne funkcje naprawiające błędy geometrii, zwykle są to narzędzia do łatania dziur i usuwania nakładających się ścian, jednak algorytmy te działają w dość ograniczonym zakresie i nie radzą sobie z poważniejszymi błędami. Same slicery także mogą posiadać bardzo proste moduły weryfikacji bryły. Sprawdzają i naprawiają one zazwyczaj jedynie problem z odwróconymi normalnymi i to jedynie w mało skomplikowanych przypadkach. Dlatego też należy dokładnie sprawdzać podgląd wydruku przed puszczeniem pliku na drukarce. 1. Model z brakującymi trójkątami siaki, model jest traktowany jako powierzchnia2. próba interpretacji uszkodzonego modelu przez slicer i uszkodzona powierzchnia w podglądzie Model 3D przygotowany zgodnie z wytycznymi i spełniający wszystkie wymagania spowoduje, że wydruk 3D będzie tańszy zarówno ze względu na mniejsze zużycie materiału (podwójne ściany mogą niepotrzebnie zwiększać powierzchnię modelu) ale również przez brak konieczności późniejszej pracy nad naprawą modelu. Poprawnie przygotowany model to także lepsza, jednolita powierzchnia modelu, co poprawia walory estetyczne wydruku a także zwiększa jego wytrzymałość mechaniczną. Dlaczego?Druk 3d coraz bardziej wkracza w każdy niemal obszar życia codziennego. Od tworzenia przedmiotów użytkowych przez wyroby medyczne po przemysł kosmiczny. Chcielibyśmy podczas planowanych warsztatów wprowadzić uczestników w świat modelowania oraz drukowania przedmiotów na drukarce 3d przy użyciu technologii FDM (nakładania kolejnych warstw roztopionego filamentu).Chcielibyśmy podczas warsztatów zaprezentować uczestnikom i uczestniczkom jak można wykorzystać tą metodę w życiu codziennym (np. naprawa sprzętu przez wydrukowanie uszkodzonego elementu) lub jako dziedzinę sztuki (projektowanie figurek czy rzeźb).Podczas zajęć zaprojektujemy oraz wydrukujemy autorską podstawkę pod telefon dostosowaną do potrzeb każdego z uczestników, którą uczestnik warsztatu będzie mógł zabrać ze sobą po zakończonym i uczestniczki warsztatu zyskają praktyczną wiedzę z zakresu projektowania oraz druku 3d wystarczającą do rozpoczęcia samodzielnej warsztatu jest wprowadzenie do modelowania 3d oraz podstaw druku 3d z użyciem popularnych urządzeń dostępnych na zaprezentować następujące tematy: do modelowania oraz podstawowe szkolenie z obsługi programu do modelowania 3d własnego modelu 3d przedmiotu użytkowego - podstawka pod telefon komórkowy z możliwością zamontowania bezpośrednio na modelu oraz eksport do właściwego formatu oraz podstawowe szkolenie z programu Cura-slicer do tworzenia plików używanych przez większość drukarek 3d (g-code) pliku z modelem do wydrukowania na drukarce modeli zaprojektowanych przez do druku 3d z opisem urządzeń dostępnych na warsztatach (opis metod druku oraz typów urządzeń, sposobów konserwacji oraz zastosowanych rozwiązań technologicznych)Jak?Prowadzone zajęcia zdecydowaliśmy się podzielić na bloki użyć ogólnie dostępnego oprogramowania (wymóg jego zainstalowania na własnym laptopie przed warsztatami):Fusion 360 - posiada darmową licencję dla hobbystów ( - program do generowania plików g-code z modeli 3d (na przykład plików stl) - darmowe oprogramowanie ( warsztatów chcemy zaprezentować różne modele drukarek wraz z ich zaletami i wadami:Prusa i3 mk3s MMU2 - najnowszy model jednej z najpopularniejszych drukarek 3d na rynkuEnder 3 pro - najpopularniejszy model budżetowej drukarki Prusa i3 mk2 - drukarka zbudowana samodzielniezortax m200 ( prowadzone będą przez dwóch trenerów, którzy będą również pomagać w razie jest własny laptop oraz kogo?To wydarzenie adresowane jest do osób, które nie posiadają doświadczenia w modelowaniu oraz drukowaniu 3d. Zapraszamy wszystkie osobyIle?Wydarzenie jest darmowe i organizowane jest dla grupy 10 Pałysiewicz - do niedawna członek HackerSpace Trójmiasto ( gdzie zajmował się budową i utrzymaniem drukarek 3D. Obecnie działa w nieformalnej grupie "Cumy" ( gdzie współtworzy warsztat otwarty na terenie Stoczni Cesarskiej. Realizuje projekty oparte o przedmioty wykonane przy pomocy druku 3D. Chętnie dzieli się wiedzą. Jest fanem nowych technologii oraz gadżetów elektronicznych, które mogą być użyte w życiu codziennym. Posiada doświadczenie w prowadzeniu szkoleń z zakresu druku 3d oraz narzędzi i procesów w IT. Zawodowo od 14 lat związany z tematyką zapewniania jakości w rożnych obszarach Herman - artysta z wykształcenia, generalista z przeszło 13 letnim stażem, ekspert w teksturowaniu złożonych obiektów 3D na potrzeby filmów i gier, twórca niezliczonych assetów, przedmiotów użytkowych i dziwnych, święcących i piszczących gizm.

jak zrobić projekt do drukarki 3d